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Abstract 

Six multiaxial fatigue models, namely Matake (M), Findley (F), Susmel & Lazzarin (S&L), Carpinteri & Spagnoli (C&S), Liu & 

Mahadevan (L&M) and Papadopoulos (P), were selected and compared in their predictive capability relative to 65 critical loading 

conditions. Given that the left-hand side (LHS) of the expressions is associated to the driving force to failure while the right-hand 

side (RHS) is associated to fatigue resistance, critical loading conditions should drive the criteria to yield a relative difference 

between LHS and RHS approaching zero. Accordingly, positive 𝐼 values indicate failure, while negative 𝐼 values indicate that the 

component should be able to withstand the given loading condition. The results of the 65 error indices for each model is presented 

in the form of histograms and analysed in terms of dispersion range, overall average and percentual frequency within a central 

range between ±10%. It was observed that Papadopoulos’ criterion presented the smallest dispersion and best overall average. 
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1. Main text  

A large number of multiaxial high cycle fatigue damage criteria have been introduced over many decades, aiming 

at predicting fatigue failure of metallic materials under time-varying multiaxial stresses. Several reviews of popularly 
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used criteria can be found in the literature, as in Y. S. Garud (1981), You and Lee (1996), Papadopoulos et al. (1997), 

Carpinteri and Spagnoli (2001) and Wang and Yao (2004), where one can verify that critical plane-based models 

represent an important group for high-cycle fatigue analysis. Application of such models depends in the first place on 

prior identification of the critical plane where fatigue damage can occur leading to crack initiation and one can thus 

proceed to calculate the stresses acting on the plan as a result of the applied cyclic loads. 

The present work has the purpose of comparing the capabilities of a number of critical plane-based criteria to predict 

high cycle fatigue behavior of hard metallic materials under combined bending and torsion. The loading conditions, 

to which the criteria were applied, were taken from published experimental fatigue resistance limit tests involving 

synchronous sinusoidal in-phase and out-of-phase loadings. The inequalities representative of five selected models, 

namely M - Matake (1977), S&L - Susmel & Lazzarin (2002) , F - Findley (1959), C&S - Carpinteri & Spagnoli 

(2001) and L&M - Liu & Mahadevan (2005) are respectively given by expressions 1 to 5 
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where 𝐶𝑎 and 𝑁𝑎 are, respectively, the shear stress and normal stress amplitudes acting on the critical plane. 𝑁𝑚 is the 

mean normal stress acting on the same plane, and therefore 𝑁𝑚𝑎𝑥 = 𝑁𝑎 + 𝑁𝑚. The constants 𝜇, 𝑘′, 𝑘, 𝑓 ∗, 𝜂 and 𝜆 are 

material parameters that are exclusively dependent on fatigue resistance limits, as shown in Table 1. 

In addition to the models presented above, a modified version of the C&S criterion, Carpinteri et al. (2013), is also 

included in the present study. Such version is obtained by replacing 𝑁𝑚𝑎𝑥  in expression 4 by the parameter 𝑁𝑎,𝑒𝑞  given 

by expression 6, where 𝜎𝑢 is the ultimate strength. 

𝑁𝑎,𝑒𝑞 = 𝑁𝑎 + 𝑓−1 (
𝑁𝑚

𝜎𝑢
)    (6) 

At this point, it is important to mention that the above given criteria are applicable to hard metallic materials where 

the ratio 𝑡−1 𝑓−1⁄  is limited to the range 1 √3⁄ ≤  𝑡−1 𝑓−1⁄ ≤ 1, as described in Carpinteri & Spagnoli (2001). One 

should also point out that the left-hand side (LHS) of the inequalities refers to the driving force for fatigue failure due 

to stresses acting on the critical plane. The right-hand side (RHS), on the other hand, is related to the fatigue resistance 

of the material, hence the comparison between the two sides could indicate whether fatigue failure is likely to happen. 

 

Table 1. Definition of pertinent material constants. 
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𝛿 is given by expressions (7) and (8) for the C&S and L&M models, respectively. 
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2. Critical-plane stresses 

For the Matake (1977) and S&L (2002) criteria, the critical plane is defined as the plane on which the shear stress 

amplitude 𝐶𝑎 attains its maximum. For the Findley (1959) criterion, the critical plane is determined by maximizing 

the linear combination of the shear stress amplitude 𝐶𝑎 and the maximum value of the normal stress 𝑁𝑚𝑎𝑥 . 

As to the C&S - Carpinteri & Spagnoli (2001, 2013) and L&M - Liu & Mahadevan (2005) criteria, the critical plane 

determination depends on the fracture plane as well as the angle between the two planes, 𝛿. The fracture plane is 

defined as the plane on which the maximum principal stress 𝑁𝑚𝑎𝑥  achieves its greatest value in the course of cyclic 

loading. Considering that 𝑠 = 𝑡−1 𝑓−1⁄ , the angle 𝛿 for C&S and L&M is respectively given by 

𝛿 = [1 − (
𝑡−1
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2
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8
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Identification of the critical plane and calculation of the stresses acting on it are summarized here for the case of 

synchronous sinusoidal normal and shear stress loading (Fig. 1), defined by the parameters 𝜎𝑎, 𝜏𝑎, 𝜎𝑚 ,𝜏𝑚 and 𝛽, 

where 𝜎𝑎 and 𝜏𝑎 are respectively the applied normal and shear stress amplitudes, 𝜎𝑚 and 𝜏𝑚 are the corresponding 

mean stresses and 𝛽 is the phase difference between the bend and torsion stress components. Fig. 2 shows a general 

material plane Δ, which is perpendicular to the 𝑥 − 𝑦 plane, with its orientation uniquely defined by the angle 𝜑 or, 

equivalently, by its complementary 𝜓. 𝑁𝑚 and 𝑁𝑎 acting on Δ are given expressions by 9 to 12, Castro et al. (2021). 

𝑁𝑚 = 𝑠𝑖𝑛2(𝜃) [𝜎𝑚 𝑠𝑖𝑛2(𝜑) + 𝜏𝑚 𝑠𝑖𝑛(2𝜑)]    (9) 

𝑁𝑎 = √𝑎2 + 𝑏2    (10) 

𝑎 = 𝑠𝑖𝑛2(𝜃)[𝜎𝑎 𝑠𝑖𝑛2(𝜑) + 𝜏𝑎 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(2𝜑)]   (11) 

𝑏 = − 𝑠𝑖𝑛2(𝜃) [𝜏𝑎 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(2𝜑)]    (12) 

The shear stress amplitude acting on Δ is given by expression 13 to 17, where 𝜃 = 𝜋 2⁄  , (Castro et al., 2021). 

𝐶𝑎 = √𝑓2+𝑔2+𝑝2+𝑞2

2
+ √(

𝑓2+𝑔2+𝑝2+𝑞2

2
)

2

− (𝑓𝑞 − 𝑔𝑝)2    (13) 

𝑓 =
1

2
𝑠𝑖𝑛(2𝜃) [𝜎𝑎 𝑠𝑖𝑛2(𝜑) + 𝜏𝑎 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(2𝜑)]   (14) 

𝑔 = −
1

2
𝑠𝑖𝑛(2𝜃) 𝜏𝑎  𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(2𝜑)    (15) 

𝑝 = 𝑠𝑖𝑛(𝜃) [
1

2
𝜎𝑎 𝑠𝑖𝑛(2𝜑) + 𝜏𝑎 𝑐𝑜𝑠(2𝜑) 𝑐𝑜𝑠(𝛽)]   (16) 

𝑞 = − 𝑠𝑖𝑛(𝜃) 𝜏𝑎 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(2𝜑)    (17) 

By maximizing 𝐶𝑎 with respect to the angle 𝜑 by varying 𝜑 according to an increment of 0.1°, one can determine 

the critical plane orientation 𝜑𝑐 as well as the corresponding 𝐶𝑎, 𝑁𝑎 and 𝑁𝑚 values. Both the Matake and S&L criteria 

can thus be applied by substituting the values obtained for a given loading condition in the LHS of expressions 1 and 
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2. The same procedure is also valid for applying the Findley criterion, except for the fact that, instead of maximizing 

𝐶𝑎, the LHS of expression 3 is to be maximized with respect to 𝜑 and the maximum value thus obtained is to be 

compared to the RHS of the same expression.  

The fracture plane orientation, defined by 𝜑𝑓 as shown in Fig. 3, is determined by maximizing 𝑁𝑚𝑎𝑥  with respect 

to 𝜑 and hence the critical plane orientation 𝜑𝑐 for both C&S and L&M criteria will be given by 𝜑𝑐 = 𝜑𝑓 − 𝛿, or 

equivalently by 𝜓𝑐 = 𝜓𝑓 + 𝛿. 

  
 

Fig. 1. Plane stress loading conditions. Fig. 2. General material plane normal to 

the 𝑥 − 𝑦  plane with its orientation defined 

by the angle 𝜑 or by its complementary 𝜓. 

Fig. 3. Critical plane orientation 𝜑𝑐  and 

its relation to fracture plane orientation 𝜑𝑓 in 

the C&S and L&M criteria 

 

Knowing 𝜑𝑐  for each criterion, 𝐶𝑎 , 𝑁𝑎  and 𝑁𝑚  values can be calculated and substituted in the LHS of the 

corresponding inequalities, which is then to be compared with the RHS. The error index 𝐼, which refers to the relative 

difference between the two sides, can be estimated as  

𝐼 =
𝐿𝐻𝑆−𝑅𝐻𝑆

𝑅𝐻𝑆
× 100.    (18) 

With the error index 𝐼 tending to zero, a given criterion is considered to be in good agreement with the experiment 

carried out for a set of cyclic bending and torsion. Positive 𝐼 values, on the one hand, are indicative of fatigue failure 

in a situation where failure is not observed, and the criterion is considered to be conservative. Negative 𝐼 values, on 

the other hand, indicate that a selected criterion is non-conservative, as it may permit an increase in the applied cyclic 

loads, thus leading to higher risk of fatigue failure. 

3. Applying the models 

In order to evaluate their predictive capabilities, the selected critical plane-based criteria were applied to a number 

of cyclic bend and torsion loadings of six different metallic materials, presented by Zenner et al. (1985), Nishihara & 

Kawamoto (1945) and Froustey & Lasserre (1989). The loading parameters are reported in Table 2, together with the 

materials’ pertinent mechanical characteristics.  

Table 2. Critical loading conditions, total of 65, relative to 6 different materials 

 

 
 

2(a) - Swedish hard steel 2(b) - Hard steel 2(c) - 42CrMo4 
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2(d) - 34Cr4 2(e) - 30NCD16 2(f) - Mild steel 

 

The results obtained are presented in Fig. 4, in the form of frequency histograms of the error index 𝐼. This figure is 

comprised of graphs corresponding to the M, F, C&S, Modified C&S, L&M and S&L criteria. The abscissa represents 

the values of the error index 𝐼, divided in intervals of 5%. The column drawn above each interval corresponding to 

the frequency, i.e., the number of loading conditions whose 𝐼 values pertain to the given interval. 

 

   
Fig. 4(a) - Matake Fig. 4(b) - Findley Fig. 4(c) – C&S 

   
Fig. 4(d) – Modified C&S Fig. 4(e) – L&M Fig. 4(f) – S&L 

 
Fig. 4(g) – Papadopoulos 

Fig. 4. Frequency histograms depicting the error index dispersion values for the criteria in question. 

 

 

Fig. 4 also includes a seventh graph, which depicts the frequency histogram of the 𝐼 values associated with applying 

a mesoscopic scale-based model, developed by Papadopoulos et al. (1997), to the same loading conditions. The 

inequality representative of this model is expressed as 
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√(
𝜎𝑎

2

3
+ 𝜏𝑎

2) + 𝛼 (
𝜎𝑎+𝜎𝑚

3
) ≤ 𝑡−1,    (19) 

where 

𝛼 = (
3 𝑡−1

𝑓−1
) − √3.    (20) 

An important advantage of the Papadopoulos model refers to the fact that it is independent of critical plane, but it 

is also to be remembered that its validity is restricted to materials for which range 1 √3⁄ ≤  𝑡−1 𝑓−1⁄ ≤ 0.8 

(Papadopoulos et al., 1997). 

3.1. Discussing the error index 

Examining the histograms shown in Fig. 4, one can conclude that the predictions made by the criteria in question 

exhibit different degrees of dispersion. As listed in Table 3, the error index 𝐼 varies from -38% to 10% for the L&M 

criterion, indicating a dispersion range of 48%. In a decreasing order, this is followed by a dispersion of 47%, 45%, 

41%, 38% e 36% for the S&L, M, Modified C&S, F and C&S criteria, respectively. As to the Papadopoulos criterion, 

an error index dispersion of 32% is noticeable. 

Table 3. Frequency histogram deviations. 

 Average Std deviation Min Median Max Amplitude 

Matake, M 2.45 7.99 -21.65 2.85 24.02 45.67 

Findley, F 5.30 7.49 -16.13 4.40 22.41 38.54 

Carpinteri & Spagnoli, C&S -2.84 7.40 -26.81 -1.56 8.78 35.59 

Modified C&S  -5.66 8.26 -35.96 -3.58 5.90 41.86 

Liu & Mahadevan, L&M -4.36 9.30 -38.55 -2.66 10.29 48.84 

Papadopoulos, P 1.80 5.27 -15.34 2.50 16.68 32.02 

Susmel & Lazzarin, S&L 3.64 7.53 -12.51 2.90 35.15 47.66 

 

Table 3 also indicates that, among all of the criteria in question, the Papadopoulos criterion displays the lowest 

error index average value (situated at 1.8%), with lowest standard deviation (5.2%). However, a low average value of 

𝐼 is not a definite indication of good predictive capability as positive values cancel out with negative ones. 

An effective method of evaluating the efficacy of a given criterion is to determine the number of tests (loading 

conditions) which belong to a selected 𝐼 interval around zero, for example from -10% to 10%. The closer this number 

to the total number of tests, the higher will be the predictive capability of the criterion. The percentage of tests 

belonging to that 𝐼 interval (±10%), as related to the total number of tests, vary between 72% for the Findley criterion 

to 86% for the C&S’. On the other hand, this percentage amounts to 95% for the Papadopoulos criterion. Percentages 

obtained for all the criteria are presented in Fig. 5, together with those calculated for an 𝐼 range between -5% and 5%. 

Again, there is more tests within this range for the Papadopoulos criterion in comparison with all the others. 

 

 

Fig. 5. Percentage of the tests belonging to central I range around 0%. 



 TL Castro et al / Structural Integrity Procedia 00 (2019) 000–000  7 

4. Conclusions 

• Dispersion of the error index values associated with applying critical plane-based criteria to a total of 65 cyclic 

loading conditions varies from one criterion to another. Whereas a dispersion range of 49% is noticed for the 

L&M criterion, the range displayed by C&S reduces to 36%. Dispersion observed for the other criteria varies 

between 39% for Findley and 48% for S&L. 

• Compared to the critical plane-based criteria, the mesoscopic scale-based model applied to the same loading 

conditions displays the smallest dispersion range of the error index values. 

• Application of the mesoscopic scale-based model is associated with the lowest overall average of the error index 

values, in comparison with that resulting from the application of any of the critical plane-based criteria. 

• The proportion of tests pertaining to a central 𝐼 range around 0% from -10% to 10% amounts to 95% of the total 

number of tests, a percentage that is higher than that detected for any other of the critical plane-based criteria. 
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