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Two multiaxial high cycle fatigue criteria pertaining to the critical plane-based approach are reviewed. The
models were proposed by Carpinteri and Spagnoli (C&S) and Liu and Mahadevan (L&M), and unlike
other models based on the same approach, they have the critical plane directly correlated with the fatigue
fracture plane. As the aim of this study is mainly to compare their capability to predict fatigue failure, the
two models were applied to a number of published experimental fatigue tests, involving synchronous
sinusoidal in-phase and out-of-phase bending and torsion. The results indicate that both models possess
good predictive capability under fully reversed stresses, with the L&M model being on the average slightly
more conservative. Applying, to the same loading conditions, a mesoscopic scale-based approach proposed
by Papadopoulos, one can verify that its predictive capability is as good as those corresponding to the C&S
and L&M criteria. However, in the presence of superimposed mean stresses, the capability of these two
models to predict fatigue behavior is seen to be considerably lower than that detected for Papadopoulos�.

Keywords C&S criterion, critical plane, error index, fatigue limit
state, fracture plane, L&M criterion, principal stresses

1. Introduction

Historically, the evaluation of the fatigue behavior of
metallic materials was based on the determination of uniaxial
fatigue test parameters for life prediction. However, many
mechanical components, such as railroad wheels, crankshafts,
axles and turbine blades, are expected to experience time-
varying multiaxial stresses during their in-service lifetime.
Accordingly, the need has been arising, over many decades, to
introduce multiaxial fatigue damage criteria capable of predict-
ing fatigue failure under such loading conditions. These criteria
can be divided into three groups: stress-based, strain-based and
energy-based models (Ref 1). Since the main focus in the
present work is multiaxial high cycle fatigue, where most
mechanical components are expected to operate under elastic
stress levels, only stress-based models are considered.

Generalization of the fatigue limit concept, so as to englobe
multiaxial loading conditions within the domain of stress-based
models, is seen to be compatible with the notion of dividing the
whole stress space in two parts, namely safe and unsafe. The
safe part, containing the origin, is to be bounded by a closed
surface, and the fatigue criterion can thus be expressed in terms
of an inequality whose satisfaction signifies that the stress state

induced by the external cyclic loading remains within the safe
part of the stress space.

The stress-based approach, which is popularly used in high
cycle fatigue analysis, englobes a large number of models that
can be divided into four groups based on empirical equivalent
stress, stress invariants, average stress and critical plane stress
(Ref 1). Several reviews of multiaxial fatigue damage criteria,
including stress-based models, can be found in the literature
(Ref 2-6). In the present study, two stress-based high cycle
fatigue models, namely Liu and Mahadevan (L&M) (Ref 1) and
Carpinteri and Spagnoli (C&S) (Ref 6-9), both belonging to the
critical plane approach, are reviewed with the underlying
purpose of comparing their applicability to predicting high
cycle fatigue behavior of metallic materials. Both models are, in
fact, applicable to a wide spectrum of materials ranging from
very ductile to extremely hard metallic alloys (Ref 1, 6).
Accordingly, the comparison can be made by applying the two
models to a number of experimental constant amplitude cyclic
loading conditions available in the literature (Ref 10-12). These
involve synchronous sinusoidal in-phase and out-of-phase
bending and torsion applied to a variety of metallic materials
with different fatigue behaviors. At this point, it needs to be
mentioned that all of the selected loading conditions correspond
to the fatigue limit state above which fatigue failure occurs and
below which fatigue life extends over a very high number of
cycles, in analogy with the fatigue limit state for uniaxial
loading of smooth (unnotched) specimens. However, one may
also point out that the C&S criterion, which has been used for
fatigue assessment of both smooth and notched structural
components, has also been extended to assess the fatigue
behavior of welded joints under in-phase and out-of-phase
loadings and more recently to evaluate fatigue life under
multiaxial random loading conditions (Ref 9, 13-15).

Critical plane-based models depend for their application on
the prior identification of the critical plane, where fatigue
damage can occur leading to crack nucleation. One can
therefore proceed to calculate the normal and shear stress
amplitudes as well as the mean stresses acting on the critical
plane, and fatigue failure assessment can thus be presented in
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the form of inequality. The relative difference between the two
sides of the inequality is referred to as the error index, and, for a
given fatigue limit state, it may be nil, positive or negative. As
the two models in question are to be applied simultaneously to
a given loading condition, a comparison of the error index
involved is expected to provide a good assessment of their
predictive capabilities in defining the fatigue behavior.

Finally, the critical plane orientation determined for each of
the two models is presented in comparison with that of the
fracture plane, for the loading conditions involved.

2. Review of the C&S and L&M Multiaxial Fatigue
Criteria

The inequalities representative of the C&S and L&M
models are given, respectively, by expressions (1) and (2)
(Ref 1, 6):
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where Ca, Na and Ha are, respectively, the shear stress, normal
stress and hydrostatic stress amplitudes acting on the critical
plane. Accordingly, the application of any of these two models
depends on the prior identification of the corresponding critical
plane. Nm is the mean normal stress acting on the same plane,
and hence, Nmax is given by

Nmax ¼ Na þ Nm ðEq 3Þ

The constants g and k in expression (2) are material
parameters which depend exclusively on the fatigue limits for
fully reversed bending f�1 and fully reversed torsion t�1, as
indicated by Eq 4 and 5 (Ref 1).
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k ¼ cos2 2dð Þs2 þ sin2ð2dÞ
� �1=2 ðEq 5Þ

The constant d in Eq 5 refers to the angle between the
fracture and critical planes and, as shown later, is a function of
s, which is the ratio t�1/f�1. Finally, it should be mentioned that
Eq 4 is valid for s £ 1 and that for s ‡ 1, g is taken to be unity
(Ref 1). For most metallic materials, where t�1 £ f�1, the
constant k, as defined by the L&M model, is equivalent to zero
and, on the other hand for f�1 < t�1, k is given by the
following (Ref 1).

k ¼ 9ðs2 � 1Þ

More recently, with the evolution of the C&S criterion (Ref
9), Nmax in expression (1) can be replaced by the parameter
Na,eq, which accounts for the effect of the mean normal stress as
given below

Na;eq ¼ Na þ f�1
Nm

ru

� �

ðEq 6Þ

where ru is the ultimate tensile strength of the material.
Equation 6 takes into account the linear relationship (proposed
by Goodman (Ref 16)) between normal stress amplitude and
normal stress mean value (Ref 9).

2.1 Critical Plane Determination

Critical plane identification for both models depends on
knowing the fracture plane as well as the angular relationship
between the two planes. Determination of the fracture plane is
therefore an essential first step toward identifying the critical
plane.

Correlation between the fatigue fracture plane and the
average principal stress directions has been analyzed by
Carpinteri et al. (Ref 9) for hard metals under out-of-phase
sinusoidal bending and torsion. While the fracture plane
orientation was experimentally identified, the average principal
stress directions were determined by employing appropriate
weight functions (Ref 9), and the results obtained have led to
the conclusion that the normal to the fracture plane agrees with
the weighted mean direction of the maximum principal stress
(Ref 9). By examining the difference between the calculated
and experimentally measured angle that the normal to the
fracture plane makes with the longitudinal axis of fatigue test
specimens belonging to a variety of metallic materials, the
results obtained were considered to be quite satisfactory (Ref
9). As indicated in this reference, the difference referred to
above was found to vary from 1� to 13� for Swedish hard steel
982 FA specimens, from 0� to 37� for mild steel specimens and
from 4� to 8� for gray cast iron specimens, and for low carbon
steel, this variation was limited to zero.

In agreement with the definition proposed by McDiarmid
(Ref 17), the fracture plane in the L&M model is identified as
the plane on which the maximum principal stress achieves its
greatest value. Considering the plane stress loading condition
(Fig. 1), defined by the parameters ra, sa, rm, sm and b, where
ra and sa are, respectively, the applied normal and shear stress
amplitudes, rm and sm, are the corresponding mean stresses and
b is the phase difference between the bend and torsion loading;
the normal stress amplitude Na and the normal stress mean
value Nm acting on an arbitrary material plane oriented at an
angle u with respect to the vertical axis are given by (Ref 6)

Nm ¼ rm sin2ðuÞ þ sm sinð2uÞ ðEq 7Þ

Na ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

ðEq 8Þ

with

a ¼ ra sin
2 uð Þ þ sa cos bð Þ sinð2uÞ ðEq 9Þ

b ¼ �sa sin bð Þ sinð2uÞ ðEq 10Þ

The fatigue fracture plane can thus be determined by
maximizing Nmax, with respect to the angle u, which can be
achieved by enumeration by changing u according to a given
increment (0.1�). The orientation of the fracture plane can then
be expressed in terms of the angle wf between the normal to the
fracture plane and the vertical axis. That is
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Wf ¼
p
2
� uf ; ðEq 11Þ

where uf is the angle associated with the greatest value of Nmax.
By adopting the above-mentioned procedure, it is hereby

verified that the fracture plane as determined by maximizing
Nmax coincides with the plane perpendicular to the weighted
mean direction of the maximum principal stress for the loading
conditions reported in Ref (9). In fact, this was found to be true
for all the loading conditions applied to Swedish hard steel,
mild steel and gray cast iron specimens, as indicated in this
reference. One can thus conclude that, for a given loading
condition, both the C&S and L&M models predict the same
fracture plane orientation, which can simply be identified by
maximizing Nmax with respect to the angle u.

Once the fracture plane is determined, the critical plane will
likewise be identified since the angle d between the two planes
is considered to be a material parameter. For the C&S model, d
is expressed as (Ref 6, 9)

d ¼ 1� t�1
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meaning that d is nil for t�1 ¼ f�1, which is the case of
extremely hard metals. For t�1=f�1 ¼ 1=

ffiffiffi

3
p

, d is equal to p=4,
which is the border between hard and mild metals. As to the
L&M model, the angle d is given by (Ref 1)
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Here d is also nil for s = 1 and equivalent to p=2 for s
tending to zero (Ref 1).

The variation of d with s is depicted in Fig. 2, where one can
observe the agreement between the two models for three s
values within the range 1/�3 £ s £ 1, which corresponds to
45� ‡ d ‡ 0. For s < 1/�3, the two models diverge from
one another and accordingly the comparison between their
applicabilities is limited, in the present study, to metallic
materials with the ratio t�1/f�1 pertaining to the range from 1/
�3 to 1.

Fig. 1 Stresses acting on (a) a general material plane and (b) the critical plane

Fig. 2 Variation of the angle d with the ratio t�1/f�1
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Knowing the angle d, the critical plane orientationWc can be
expressed, as shown in Fig. 1, by

Wc ¼ Wf þ d ðEq 14Þ

or equivalently as

uc ¼ uf � d ðEq 15Þ

where d is to be calculated using Eq 12 and 13 for the C&S and
L&M criteria, respectively.

With the critical plane already identified, the stresses Na and
Nm acting normal to it can be determined by replacing u in Eq
7, 9 and 10 by uf� d. In order to calculate the amplitude of the
shear stress acting on the critical plane, one has, first, to
consider a general material plane D (Fig. 1). During a cycle of
synchronous out-of-phase sinusoidal biaxial normal and shear

stress loading, the tip of the shear stress vector ~C describes, on
D, a closed curve, which, as demonstrated in (Ref 3, 6),

Table 1 Loading conditions applied to hard steel_1

f21=313.9 MPa t21=196.2 MPa ru= 708.1 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 327.7 0 0 0 0
2 308 0 63.9 0 0
3 255.1 0 127.5 0 0
4 141.9 0 171.3 0 0
5 0 0 201.1 0 0
6 255.1 0 127.5 0 30
7 142 0 171.2 0 30
8 255.1 0 127.5 0 60
9 147.2 0 177.6 0 60
10 308 0 63.9 0 90
11 264.9 0 132.4 0 90
12 152.5 0 184.2 0 90

Table 2 Loading conditions applied to hard steel_2

f21=313.9 MPa t21=196.2 MPa ru= 608 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 138.1 0 167.1 0 0
2 140.4 0 169.9 0 30
3 145.7 0 176.3 0 60
4 150.2 0 181.7 0 90
5 245.3 0 122.6 0 0
6 249.7 0 124.8 0 30
7 252.4 0 126.2 0 60
8 258 0 129 0 90
9 299.1 0 62.8 0 0
10 304.5 0 63.9 0 90

Table 3 Loading conditions applied to mild steel

f21=235.4 MPa t21=137.3 MPa ru= 518.8 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 245.3 0 0 0 0
2 235.6 0 48.9 0 0
3 187.3 0 93.6 0 0
4 101.3 0 122.3 0 0
5 0 0 142.3 0 0
6 194.2 0 97.1 0 60
7 108.9 0 131.5 0 60
8 235.6 0 48.9 0 90
9 208.1 0 104.1 0 90
10 112.6 0 136 0 90
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corresponds to an elliptic path. The semi-axes of the ellipse can
be computed as (Ref 6).

Ca;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with the major semi-axis representing the shear stress amplitude
Ca. The functions f , g, p and q are given by (Ref 6)
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Table 4 Loading conditions applied to gray cast iron

f21=96.1 MPa t21=91.2 MPa ru= 230 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 93.2 0 0 0 0
2 95.2 0 19.7 0 0
3 83.4 0 41.6 0 0
4 56.3 0 68.0 0 0
5 0 0 94.2 0 0
6 104.2 0 21.6 0 90
7 97.1 0 48.6 0 90
8 71.3 0 86.1 0 90

Table 5 Loading conditions applied to 42CrMo4

f21=398 MPa t21=260 MPa ru= 1025 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 328 0 157 0 0
2 286 0 137 0 90
3 233 0 224 0 0
4 213 0 205 0 90
5 266 0 128 128 0
6 283 0 136 136 90
7 333 0 160 160 180
8 280 280 134 0 0
9 271 271 130 0 90

Table 6 Loading conditions applied to 34Cr4

f21=410 MPa t21=256 MPa ru= 795 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 314 0 157 0 0
2 315 0 158 0 60
3 316 0 158 0 90
4 315 0 158 0 120
5 224 0 224 0 90
6 380 0 95 0 90
7 316 0 158 158 0
8 314 0 157 157 60
9 315 0 158 158 90
10 279 279 140 0 0
11 284 284 142 0 90
12 355 0 89 178 0
13 212 212 212 0 90
14 129 0 258 0 90
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where h is the angle between the normal to the plane D and the
z-axis (normal to the x–y plane), rt;a and rl;a are, respectively,
normal stress amplitudes along the x and y axes, i.e., transverse
and longitudinal directions, and a is the phase difference
between the normal stress components.

For the plane stress loading conditions in question, h is
equivalent to p=2, rt;a is nil and rl;a is replaced by ra and
hence f and g turn out to be nil and p and q reduce to

p ¼ 1

2
ra sin 2uð Þ þ sa cos bð Þ cosð2uÞ ðEq 16Þ

q ¼ �sa sin bð Þ cosð2uÞ ðEq 17Þ

with Ca expressed as

Ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p

ðEq 18Þ

and the amplitude of the shear stress acting on the critical plane
is obtained for the p and q values calculated by replacing u in
expressions (16) and (17) by uc ¼ uf � d.

The C&S and L&M criteria can thus be applied by
substituting Na, Nm and Ca values, calculated for each model,
in the inequalities given, respectively, by expressions (1) and
(2). It is to be noted that the term involving Ha in expression (2)
vanishes in virtue of the fact that the constant k is nil for
metallic materials. The error index I, which refers to the relative
difference between the two sides of the inequalities, can be
estimated as

I ¼ left hand side� right hand side

right hand side
� 100 ðEq 19Þ

Aiming at comparing the predictive capability of the models
in question with other pertinent models, a mesoscopic scale-
based criterion developed by Papadopoulos et al. (Ref 3) and
Papadopoulos (Ref 18, 19) is to be applied to the same
experimental loading conditions. The inequality representative
of Papadopoulos� criterion is expressed directly in terms of the
applied stress amplitudes and mean normal stress as given
below:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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3
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ðEq 21Þ

The application of Papadopoulos� criterion can be made by
substituting ra, sa and rm in expression (20) and the
corresponding error index I estimated from Eq 19. It should
be noted though that the validity of the above criterion is
limited to metals for which the inequality 1/�3 £ t�1/f�1 £
0.8 holds and, therefore, cannot be applied to a material like
gray cast iron, where the ratio t�1/f�1 is close to unity.

It is important to point out that the error index-based
comparison, which is here proposed to be carried out between
the models in question, can be made in terms of conventional
fatigue limit state under multiaxial loading, where the fatigue
life extends over a high number of cycles (> 106). With the
error index I tending to zero, a given criterion is considered to
be in good agreement with the experiment carried out for a set
of cyclic bend and torsion loading. Positive I values, on the one
hand, are indicative of fatigue failure in a situation where
failure is not observed, and hence, the criterion is considered to
be conservative. Negative I values, on the other hand, indicate
that an adopted criterion is nonconservative, as it may permit an
increase in the applied cyclic loads thus leading to higher risk
of fatigue failure.

3. Applying the Models

The loading conditions, which are listed in Tables 1, 2, 3, 4,
5, 6, and 7, correspond to the fatigue resistance limits of seven
different metallic materials, and hence, they can be used to test
the applicability of the criteria in question. As mentioned
earlier, these loading conditions come from various sources
(Ref 10-12) and involve both in-phase and out-of-phase
synchronous sinusoidal bending and torsion, whereby normal
and shear stress components belonging to the same plane act
cyclically on the fatigue specimens. For smooth unnotched
fatigue specimens, 3D stresses are not likely to arise and the
normal to the critical plane continues to belong to the x–y plane
(Fig. 1). As presented in Tables 1, 2, 3, 4, 5, 6 and 7, the
loading parameters include both stress amplitudes and mean
stress values together with the phase difference between the
normal and shear stress components. Ultimate tensile strength
and fatigue resistance limits (f�1 and t�1) are also listed in these
tables.

Table 7 Loading conditions applied to 30NCD16

f21=660 MPa t21=410 MPa ru= 1880 MPa

Loading conditions ra, MPa rm, MPa sa, MPa sm, MPa b, �

1 485 0 280 0 0
2 480 0 277 0 90
3 480 300 277 0 0
4 480 300 277 0 45
5 470 300 270 0 60
6 473 300 273 0 90
7 590 300 148 0 0
8 565 300 141 0 45
9 540 300 135 0 90
10 211 300 365 0 0
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The fracture plane orientation, corresponding to the loading
conditions in question, is presented in Fig. 3 and 4, in terms of
wf which is the complementary angle to uf. The critical plane
orientation, on the other hand, is presented in the same figure in
terms of the angle wc which is obtained by adding d to wf.

The values of the error index I corresponding to the different
loading conditions are presented in Fig. 5 and 6 for the variety
of materials involved. In addition to the error index evaluated
for the C&S, L&M and Papadopoulos models, this figure also
depicts the I values obtained by replacing Nmax by Na,eq (Eq 6),
in virtue of the evolution of the C&S criterion.

3.1 Discussing the Error Index

Although it can be stated that, except for a few cases, the
majority of the I values shown in Fig. 5 and 6 are situated
within the range ± 10%, indicating fair predictive capabilities
of the criteria in question, one should point out that no common
pattern is observed for the variation of the error index, for the
materials involved. This is also reflected in the average I value,
which for a given model varies considerably from one material
to another.

As the loading conditions applied to hard steels (Tables 1
and 2) correspond to fully reversed bending and torsion, the

Fig. 3 Fracture and critical plane orientations, as defined, respectively, by wf and wc, for the different loading conditions: (a) hard steel_1; (b)
hard steel_2; (c) mild steel and (d) cast iron
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modified and original C&S criteria turn out to be equivalent.
Besides being close to each other, the individual error index
values associated with both C&S and L&M criteria are all
situated in the range � 10 < I < 5, which indicates fairly
good capability for predicting fatigue behavior of hard steels.
However, based on the observation that the average error index
for these two models is negative, they may be considered as
being less safe compared to the Papadopoulos criterion seen to
be moderately conservative.

In the case of mild steel, for which the ratio t�1/f�1 amounts
to 0.584, the angle d is given by 44.79� and 44.61� for C&S
and L&M, respectively. For fully reversed loading, this results
in having the same error index for both criteria (Fig. 3 and 4).
On the average, these two models may be considered to be

slightly conservative, but much less so if compared to
Papadopoulos� (Fig. 5 and 6). Specifically, for out-of-phase
loading, the error index I is confined to � 3 < I < 2 for C&S
and L&M, but turns out to be more conservative on applying
the Papadopoulos criterion.

The application of the models to gray cast iron subjected to
fully reversed loading indicates that the L&M is more
conservative than C&S. This is manifested by comparing the
individual I values (Fig. 5 and 6) as well as their overall
averages (Fig. 7).

With regard to the 42CrMo4 and 34Cr4 alloys, one can
observe that, for more than half of the loading conditions
involved, the error indices associated with applying the C&S
and L&M criteria are highly negative, i.e., I < � 10%.

Fig. 4 Fracture and critical plane orientations, as defined, respectively, by wf and wc, for the different loading conditions: (a) 42CrMo4; (b)
34Cr4 and (c) 30NCD16
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Further, one may also observe that, for fully reversed loading,
the two models result in close values of I. However, for loading
conditions involving mean stresses, the index predicted by the
original C&S is appreciably different from that obtained by
applying the L&M. The use of the modified C&S criterion in
this case results in approximating the two indices to one
another. Compared to Papadopoulos�, both C&S and L&M
criteria are seen to possess far less predictive capability for the
two alloys, which is also confirmed by the average I values
reported in Fig. 7.

Finally, regarding the 30NCD16 alloy, one can notice that,
except for a single out-of-phase loading condition, the error
index is limited to � 10 < I < 9 for both C&S and L&M
criteria. For loading conditions involving a mean stress rm
acting during cyclic loading, the modified C&S criterion
implies in error index closer to that predicted by L&M. It
should be noted, though, that this may occasionally signify, as
can be verified from Fig. 5–7, a lower predictive capability of
the modified C&S criterion in comparison with the original
one.

4. Conclusions

Based on the comparative study carried out in the present
work, the following conclusions can be drawn:

Fracture plane orientation, which is exclusively dependent
on the fatigue loading parameters, can be identified in both
C&S and L&M models as the plane on which the maximum
principal stress achieves its greatest value during cyclic
loading.

The predictive capability of the models, in case of fully
reversed bend and torsion loading, depends primarily on the
magnitude of the angle between the fracture and critical planes,
which is inherent to each model. Although the error index
values for this type of loading are shown to be very close, the
L&M model is considered to be slightly more conservative than
its C&S counterpart. However, both models are considered to
be much less so, compared Papadopoulos�.

For loading conditions involving the presence of mean
stresses, the original C&S criterion is seen to possess better

Fig. 5 Error index associated with applying the models, in question, to the individual loading conditions: (a) hard steel_1; (b) mild steel; (c)
hard steel_2 and (d) cast iron

4748—Volume 28(8) August 2019 Journal of Materials Engineering and Performance



predictive capability than its L&M counterpart. However, on
adopting the modified C&S version, the error index gets closer
to that predicted by the L&M model, which may occasionally
signify lower predictive capability of the modified C&S version
relative to the original one. Finally, one can conclude that, in
addition to being more conservative, the Papadopoulos model
possesses a better capability for predicting fatigue behavior for
this type of loading in comparison with both C&S and L&M
criteria.
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