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Abstract. Fatigue failures of motor crankshafts operating in 

thermoelectric power plants have recently been reported. Stress fields 

provided by finite element calculations at critical points of a crankshaft 

that failed in service are used to test the structural integrity of the 

component. Taking into account the fact that the stresses acting at a given 

point are most likely out of phase, multiaxial fatigue criteria based on the 

von Mises stress are considered to be most suitable for predicting the 

fatigue behavior of the crankshaft. Using the von Mises stress, it was also 

possible to apply octahedral shear stress-based criteria and the results 

obtained have indicated that the crankshaft made of DIN 34CrNiMo6 steel 

should not suffer fatigue failure under the action of the stress fields in 

question. However, such failures have been occurring and this apparent 

discrepancy is presented and briefly discussed in the present study.   

1 Introduction  

Historically, the evaluation of the fatigue behavior of metallic materials was based on the 

determination of uniaxial fatigue test parameters for life prediction. However, many 

mechanical components such as railroad wheels, crankshafts, axles and turbine blades are 

expected to experience time-varying multiaxial stresses during their in-service lifetime. 

Accordingly, the need has been arising to introduce multiaxial high cycle fatigue damage 

criteria capable of predicting fatigue failure under such loading conditions. 

The present work deals with the case of a motor crankshaft which suffered fatigue 

failure during operation in a power generating thermoelectric plant. The crankshaft is 

presented schematically in Fig. 1, showing its main journals and indicating the sequence of 

firing, adopted so as to insure uniform rotational motion of the crankshaft. Stresses and 

strains developed in the crankshaft during rotation were estimated numerically via finite 

element method using a commercial Ansys software. Twenty critical locations, exhibiting 

high stress levels, were seen to exist at the root of the junctions between the journals and 

their corresponding webs. As one may expect, these stresses are elastic in nature and hence 

they can be used to predict the possibility of fatigue failure by applying stress-based high 
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cycle fatigue criteria [1-7] at critical locations, where fatigue damage is capable of 

initiating. Although the stress components acting at a given point are synchronous, they are 

generally out of phase and hence applying a failure criterion using individual stress 

amplitudes and mean stress values is seen to be a difficult task. However, in addition to 

providing the variation of each stress component during a full cycle of the crankshaft, the 

finite element calculations also provide the three principle stresses as well as the 

corresponding von Mises stress, incorporating whatever phase difference existing between 

the individual components of the stress tensor. Accordingly, the fatigue failure criteria to be 

applied in the present work are those based on static yield criteria models. More 

specifically, Mises, Sines and Crossland models are reviewed and then applied to the stress 

fields acting at twenty critical locations of the crankshaft. 

 

2 Reviewing the models  

2.1 Mises equivalent stress criterion 

Knowing the maximum and minimum values of von Mises stress at a given point, both the 

corresponding amplitude and mean value can be respectively expressed as 
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and the criterion for fatigue resistance is given by [8] 
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where  is the fatigue resistance limit in the presence of a mean stress . 

Based on the Goodman diagram,  can be related to the fatigue limit stress in fully 

reversed bending  by the expression [9] 
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where is the ultimate tensile strength. 

On the other hand, if one adopts the Gerber relation, expressed in terms of, will have the 

form [9] 
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2.2 Sine’s criterion 

Here the octahedral shear stress is proposed to be used as a fatigue damage criterion. The 

physical significance of the octahedral shear stress is that it expresses the average effects of 

slippage on different planes and in different directions of all crystals in the aggregate, with 

slip in any given grain caused by the critical resolved shear stress in that grain [10]. As 

static torsion does not influence either cyclic bending or cyclic torsion fatigue limits and as 

static tension and compression linearly influence the fatigue limit in both tension and 

torsion, Sines’ criterion considers that the mean hydrostatic stress during a cycle has an 

effect on fatigue life. The resulting failure criterion can thus be expressed as [8] 
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where  is the octahedral shear stress range,  is the mean hydrostatic stress during a 

cycle and  and  are constants that can be determined by applying specific cyclic 

loading conditions. It is important to point out that Sines criterion pertains to the static 

yield-based models group given the relationship between  and  shown below [8]. 
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The determination of the constants  and  can be achieved by considering two 

different cyclic loading conditions. For example: a fully reversed uniaxial cyclic normal 

stress (stress ratio ), with the fatigue resistance limit , and another loading 

condition corresponding to repeated bending ( ), with the fatigue resistance limit  

related to  by the Goodman relation [9] according to the following expression: 
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With these loading conditions,  and  can be calculated as: 
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and hence the criterion is finally expressed as 

 
(11) 

 

Now for fully reversed torsion,  is nil and  is equal to , meaning 

that  will be given by . For  to be unique, has to be equivalent to 



 

, which is seen to be a serious limitation on the Sines criterion as it disagrees with 

experimental results where  varies from 0.5 for mild metals to 1 for brittle metals 

[1,2]. 

Another form of the Sines criterion can be presented as [1] 
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where  is the amplitude of the second invariant of the deviatoric component of the stress 

tensor. Here  and  are constants to be determined by applying two different cyclic 

loading conditions as, for example, fully reversed torsion and repeated bending ( ), 

thus yielding the constants  and : 
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and the criterion will be represented by 
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It is important to point out that equations (11) and (15) are equivalent, which can simply 

be demonstrated by replacing  in equation (15) by  and multiplying the two sides 

by  thus yielding the following relation. 

 

2.2 Crossland’s criterion 

Here the mean hydrostatic stress is replaced by the maximum hydrostatic stress during a 

loading cycle and the criterion is thus represented by [11] 
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For ;  

For ;   

 

Accordingly, 
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and 
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3 Applying the models  

This can be achieved by substituting the stress components acting at a given point of the 

crankshaft in the left-hand side (LHS) of the inequalities corresponding to the models in 

question. However, such components are expected to be most likely out of phase and hence 

the application of static yield criteria models is best achieved on the basis of von Mises 

stress along a cycle of the crankshaft, thus  can be determined using equation (7). 

A comparison between the two sides, for each of the inequalities given by expressions 

(3), (11) and (17), would indicate whether fatigue failure would or not occur. With the 

right-hand side (RHS) considerably exceeding the left-hand side (LHS), one may conclude 

that the structural integrity of the component in question would be maintained for “infinite” 

fatigue life. Such a comparison can be formalized by considering a fatigue resistance index 

, defined by 
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4 Results and discussion  

The maximum and minimum values of the von Mises stress, estimated numerically via 

FEM at twenty critical points along a full cycle of the crankshaft, are presented in Table 1. 

The steel’s fatigue properties needed to apply the models, namely , ,  and , are 

presented in Table 2, together with the constants , ,  and , calculated respectively, 

according to equations (9), (10), (18) and (19). 

Based on expressions (3), (11) and (17), one can compare the two sides for each of the 

three inequalities and therefore calculate the fatigue resistance index , for the loading 

conditions in question. The individual  values obtained at the twenty critical locations of 

the crankshaft are given in Fig. 2, for the Mises, Sines and Crossland criteria. A comparison 

of the average  values corresponding to the three criteria is presented in Fig. 3. The 

difference between Mises criterion, on the one hand, and Sines and Crossland criteria, on 

the other hand, is attributed to the fact that the latter two models consider that the 

hydrostatic stress component affects the fatigue behavior of the material. 

As a result of applying the three models in question, one verifies that the driving force 

for fatigue fracture, represented by the cyclic stresses, is invariably inferior to the fatigue 

resistance limit, defined by the RHS of the inequality, meaning that fatigue failure is not 

liable to take place. This does not correspond to the reality of the situation where failure of 

the crankshaft did in fact occur. Largely negative values of , which are indicative of no 

failure, could be due to an overestimated RHS and/or underestimated LHS of the 

inequalities involved in the criteria. 

An underestimated LHS could be caused by adopting high safety factor and/or could be 

related to a possible underestimation of the stress fields provided by the finite element 

calculations. Another important factor leading to such a discrepancy may ultimately be 

related to microstructural aspects of the steel. In fact, preliminary metallographic 

investigation has revealed the presence of large elongated nonmetallic inclusions capable of 

reducing the fatigue resistance limit down to a level considerably lower than that actually 

taken into account. 

 

 



 

Table 1. Maximum and minimum levels of von Mises stress, together with its range, amplitude and 

mean value, at twenty critical locations of the crankshaft. 

Crackpin 

Journal 

Connecting 
Rod 

mis, max 

[ MPa ] 
mis, min 

[ MPa ] 
mis  

[ MPa ] 
mis, m 

[ MPa ] 
mis, a 

[ MPa ] 

1 
A 155 -38 193 58 96 

B 199 -208 408 -4 204 

2 
A 221 -228 450 -3 225 

B 183 -182 366 0 183 

3 
A 186 -160 347 12 173 

B 206 -199 405 3 202 

4 
A 177 -175 352 0 176 

B 211 -228 440 -8 220 

5 
A 209 -216 425 -3 212 

B 147 -92 239 27 119 

6 
A 142 -144 287 -0 143 

B 195 -41 237 77 118 

7 
A 166 -44 211 61 105 

B 141 -55 197 42 98 

8 
A 144 -54 199 45 99 

B 120 -59 179 30 89 

9 
A 108 -74 182 17 91 

B 127 -68 195 29 97 

10 
A 121 -82 204 19 102 

B 171 -91 262 40 131 

 

 

 

 

Table 2. Fatigue properties of the DIN34CrNiMo6 steel, together with the values of αs, αc, βs and βc. 

 

[MPa] 

 

[MPa] 

 

[MPa] 

 

[MPa] 
  

 

[MPa] 

 

[MPa] 

414 239 1035 296 0.188 0.312 195 324 

 

 

 



 

 

Fig. 1. Schematic of the crankshaft, showing its main journals and indicating the sequence of firing. 

 

 

 

Fig. 2. Fatigue Resistance Index, as determined at twenty different locations of the crankshaft. 

 

 

Fig. 3. Average values of the fatigue resistance index for the three models in question. 



 

5 Conclusion  

Based on what is presented above, the following conclusion can be drawn: 

Applying the Mises, Sines and Crossland models, it is verified that the driving force for 

fatigue failure represented by the stress fields acting at critical points of the crankshaft is 

lower than the fatigue resistance limit of the steel. The occurrence of fatigue failure, despite 

such a verification, can be rationalized on the basis of a possible underestimation of the 

stress fields provided by the finite element calculations and / or an overestimation of the 

fatigue resistance limit which is a function of microstructural aspects of the steel. 
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